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A B-Spline Approach to Hermite Subdivision

U. Schwanecke and B. Jiittler

Abstract. We present a new approach to Hermite subdivision schemes.
It is based on the observation that a sequence of second order Hermite
data define a unique interpolating cubic C1 spline. The B-Spline form of
this interpolating spline leads to a stationary binary subdivision scheme
with 4 different subdivision rules for the control points. We construct a
generalized 4-point scheme which leads to a new family of C 2 Hermite
subdivision schemes.

§1. Introduction

Starting from an initial sequence {hý°)}jE% of second order Hermite elements
(i.e. vectors containing function values and associated first derivatives), a Her-
mite subdivision scheme (cf. [4,5,6,7]) of order two recursively generates finer

sequences {h k) }ie2 of Hermite elements associated with the dyadic points

{tk) = i 2-k}ieZ. The refinement is based on two rules,

m M
h(k+l) A- A k) hk) h(k+l) -Y ) (k) (

Aj h+J, 21 k = 0 ,1,2,. , (1)°•2 Z 'j 2i-+1 / 'i+3' "

j=0 j=O

where the matrix masks A(k) =- {A(k),... , A(k)$ }, B(k) B- {B(k) , Bk)} of

the scheme consist of real 2 x 2 matrices A k), BY(k depending on the subdivi-
sion level k. Merrien [7] considered Hermite-type 2-point-schemes (i.e. with
m = 1), generating C' functions. By introducing an auxiliary point subdivi-
sion scheme, Dyn and Levin [4,5] analyzed stationary Hermite-interpolatory
subdivision schemes of arbitrary order. Using this approach, Kuijt [6] con-
structed several C 2 Hermite interpolatory subdivision schemes of order two.
Kuijt derived the refinement rules by considering the polynomials interpolat-
ing neighboring Hermite elements, and sampling Hermite data from them.

By considering the interpolating splines associated with the Hermite ele-
ments, this paper introduces a new approach to Hermite subdivision. We ana-
lyze the smoothness of the limit function, and present a family of C 2 Hermite
subdivision schemes generalizing the 4-point scheme [3]. This spline-based
approach can be generalized to Hermite elements of arbitrary order.
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§2. Spline Subdivision Schemes

At each subdivision level k, the Hermite data {h k)liczz define a unique in-
terpolating cubic C 1 spline, having the B-spline representation

X(k)(t) = Eplk)Ni,4 (t) with knots T(k)=(..., t(k) t(k) t(k) t(k)
with 'nt T-i+1'i+1-1 (2)

2x 2x

The control points plk) R R are associated with the Greville-abscissas (see

e.g. [8]) -2i tlk) -- _1 and = t~k) + 3-'1 forming a nonuniform
sequence. Control points and Hermite elements are related by the transfor-
mations ((k) ,(k)T H(k)h(k) and hýk) = (H(k))-l( (k) •(k) jT

-'Ai ,2i+1 h ) P2i T, where

H(k)- (1 - ) (H(')-l-= ( 3 •k1 33_1) (3)3 2r -32-132

Clearly, the spline function X(k) can be represented with respect to the refined
knot vector T(k+l). Knot insertion leads to the following 4 refinement rules
for the B-Spline control points:

p(k+-) = 3(k) + (k) •(k+l) 1 (k) 5 (k) _2 (k)
4i 42i 4 2i+1, p4i+2 -82i + SP 2 i+l + SP2i+2, (4)

p (k+ l) - +(k) 3 (k) ~(k+ l =) 2 ( + 5 •(k) + S F(k ) (4)/4i-{1 =4YI2i M-4"i+1' P4i+3 M Fi+1 8- 82i+2 +1Pi3

The affine combinations (4) describe a 4-rule stationary binary subdivi-
sion scheme for the (nonuniformly parametrized) B-spline control points. This
scheme generalizes the splitting step of a binary uniform subdivision scheme.
The sequence of control polygons converges to the C1 limit function X°.
Generalizing (4) leads to the notion of a spline subdivision scheme:

Definition 1. A spline subdivision scheme S(a°,a 1 ,a 2 , a3 ) with the coeffi-
cient masks ah 2(ah,.. J, a'm~l), generating a sequence of cubic C' spline
functions X(k)(t), is given by the four subdivision rules

2m+1p(k+l) = ah (k)
(4i+h VE j 2i+k , h=0,1,2,3, k=0,1,2,..... (5)

j=0

With the help of the transformations (3), the matrix masks of Hermite sub-
division schemes (1) can be transformed into the coefficient masks of spline
subdivision scheme (5), thus motivating the following definition.

Definition 2. A Hermite scheme is said to be stationary if the matrices AJ

H(k+l) Ask) (H(k))-l' Bj := H(k l) B(k) (H(k))- 1, are constant for all k (j
0,... ,m). The coefficients ah of the associated spline subdivision scheme are
obtained from

(o (o2 2
Aj 2ia2j+l Bj a2  1 alj)l

al 1 ' 3
2j a 2j~I a2 j a 2j+l

Consequently, every stationary Hermite subdivision scheme S(A(k), B(k)) is
equivalent to a spline subdivision scheme S(a°, a 1 , a 2 , a 3). Note that a spline
subdivision scheme can also be seen as a special matrix subdivision scheme
(see [1]) acting on vectors of 2 consecutive control points.
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§3. Convergence Analysis

In the sequel we generalize the approach introduced by Dyn, Gregory and
Levin [2] to the spline subdivision case. Consider a spline subdivision scheme
S(a°, a1 , a 2 , a 3) on the finite domain [0, n] E R. The scheme is well defined
on this domain, for all k > 0, if the associated Hermite elements at stage k
are defined on the set {t~k)Ii E Zk}, where

r2m- 1 if Am•A0
Zk={O,01,...,2kn+nl}, nl= 2m-1 if Am=O.

12m-2 if Am=O.

The spline function (2) has the knots

T(k)_{÷(k), (k) ÷(k) ÷(k) t~k),.. ÷t(k) ÷(k) t(k)
T '-1 o 0 1 1 2kn+ni"I-n 2kn~nl, 2kn+nl+l1

and the control points (p~k))i=O,...,2(2.n+nl)+._

Consider an interval I -k) [t~k) t(k) ] at the k-th subdivision step. The
control points which govern the future behavior of the process in this interval,(k) •(k) •
are gathered in the vector Pi,k = (P2i ," P2(i+nl +1)+1J)'

The control point vectors P2i,k+l, P2i+1,k+1 at the subdivision level k + 1,

associated with the subintervals I2+1) and 2i(k+, are obtained from Pi,k by
two linear transformations,

P2i,k+I = Go Pi,k and P2i+l,k+l = G, Pi,k (6)

with Go = (I...M-2a G(3 ... _2) where G(?,...jP) is the matrix
comprised of the elements of G, at rows ii <" . < ip and columns jl < ... < j.
These linear transformations are expressed as submatrices of the M x M
generator matrix G, where M = 2(n, + 3). If Am # 0, then M = 4(m + 1),
and we get the generator matrix

(A 0  . . . . . . . Am 0 ....... 0
Bo . . . . . . Bm 0 ....... 0
0 Ao . . .. . . . Am 0 ... 0

G- 0 B 0  . . . . . .  Bm 0 ... 0 (7)

0 ... 0 Ao . . .. . . . Am 0
0 .. 0 Bo . . . ". . .  Bm 0

Otherwise, if Am = 0, M = 4m + 2 and the generator matrix is as above but
with the last two rows and columns deleted.

3.1. Continuity

The following necessary condition is analogous to [2, Prop. 2.3]. Alternatively
it can be formulated using the eigenstructure of the masks of the associated
matrix subdivision scheme, cf. [1].
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Proposition 3 (Affine invariance). A necessary condition for the uniform
convergence of the spline subdivision process to a continuous nonzero limit
function on [0, n], for arbitrary initial data, is that Z-,m 1 ah = 1 for all
h = 0,1,2,3.

In order to analyze the convergence to a continuous limit function, we exam-

ine the difference scheme AS(a°, al, a 2, a3 ) generating the differences A~k) =

2+- _ If the necessary condition of Proposition 3 is satisfied, then this
process can again be described with the help of another generator matrix

C = EM G (EM)-( 1  (8)M-1)G... M ' 18

which is obtained using the upper triangular matrices EM = (--i,j + 6i+lj)

and (EM)- 1 = (- Z•M=-1l - i+h,j), cf. [2, Prop. 3.2]. The M-3 differences

governing the future behavior of the process in the interval I(k) are again[A(k) .. A(k) 1)T . The analogues of the
collected in a vector Ai,, = t ,Th ng2(i+nl+1)f h

transformation (6) are

A2i,k+l = COAi,k and A 2 i+l,k+l = ClAi,k, (9)

where C = C(1M-3) and C1 = C(3".M-1"). Note that the row and column1h r o = l... M -31 Il... M -3J

ranges of the sub-matrices Co, C1 are different from those in [2], as we analyze
a difference process with 4 (rather than 2) rules. We get (cf. [2, Theorem 3.1])

Theorem 4. Let the spline subdivision process satisfy the necessary conver-
gence condition of Proposition 3. Then the following are equivalent:
(i) The spline subdivision process S(a°, a1 , a2, a 3 ) converges uniformly to a

continuous limit function on [0, n] for arbitrary initial data.
(ii) The difference process AS(a°, a', a 2 , a 3

) is contracting, i.e. it converges
uniformly to zero on [0, n] for arbitrary initial data.

(iii) There exists an integer L > 0 and a real number 0 < a < 1 such that

IICil ""CiLI1 oo c" Vii C {0,1} and j = 1,...,L.

In the sequel we have to analyze other point processes with four different
refinement rules. The continuity of the limit function can then be analyzed in
an analogous way, where the generator matrix is obtained as in (8).

3.2. Derivative process

In order to investigate the differentiability of the limit function f, we analyze
the first derivative of the cubic C' splines (2). Clearly, we obtain a sequence of
quadratic CO splines with knots T(k), see Figure 1. If the necessary condition
of Prop. 3 is satisfied, then the quadratic splines are generated by another
spline subdivision scheme, again with four different rules for the control points.
This scheme will be called the derivative scheme aS(a°, al, a2, a 3).
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cubic C 1 B-spline (k) first derivative inscribed polygon
(k) 1 k) 1> i+- (quadratic C° B-spline)

i-i k', 'k

P2(i-1) P 2() l (kP)+
h(k) i+1

( )h(k) 1* 9 ,
N i. 1) 11i, h _k)

02i+1

V Greville-abscissa

A kwo

Fig. 1. Derivative scheme and inscribed polygon process.

Proposition 5. If the derivative process OS(a°, al, a 2 , a 3) converges uni-
formly to d C C[O, n], then the spline subdivision scheme S(a0 ,a 1 ,a 2, a3 )
converges uniformly to f E C'[0,n], and f' = d.

Using similar techniques as in Section 3.1, we define control point vectors and
a generator matrix D. We omit the details, giving only the main result:

Proposition 6. The derivative scheme aS(a°, al, a 2 , a 3) has the (M - 1) x
(M - 1) generator matrix

with El = diag(1,2,1,...,2)EM and (Eml)- = (EM)-l diag(1, 1,...,½).

The continuity of the limit function generated by the derivative scheme
can now easily be analyzed as in Section 3.1 by discussing the associated
difference scheme AOS(a°, a1 , a 2 , a3 ). This leads to criteria for C' continuity
of Hermite subdivision schemes.

3.3. C'k convergence analysis via inscribed polygons

In order to examine higher order continuity, we inscribe a polygon into the
quadratic CO spline and analyze the resulting subdivision scheme, called the
inscribed polygon process POS(a°, a 1 ,a 2 , a 3). More precisely, at the subdi-
vision level k, we consider the piecewise linear function with the vertices

tk+1), k(k) (tk+l))), see Figure 1.

Proposition 7. The inscribed polygon process POS(a°, a1 , a 2, a 3 ) of the

derivative scheme has the generator matrix P = LM-1 D (LMj)-1 which is
obtained using the (M - 1) x (M - 1) auxiliary matrices

*2
4• 2 24 •)12 -!212

LM-1= , (Lm-I)-

-_ 2 )4 24 2 2
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The derivative and the inscribed polygon processes are equivalent:

Lemma 8. The derivative process 0S(a°, a 1 , a 2 , a 3) converges uniformly to a
continuous limit function f on [0, n] if and only if the inscribed polygon process
PaS(a°, a 1 , a 2, a 3 ) converges uniformly to a continuous function g C C[0,n].
Moreover, f = g.

Proof: This equivalence is due to the convex hull property of B-splines, and
to approximation properties of interpolating quadratic Co splines. El

Using the inscribed polygon process, we are now able to discuss the con-
vergence of the spline subdivision scheme to limit functions with higher or-
der differentiability, by the same analysis as in the non-Hermite case (point
schemes). We simply have to analyze the divided difference processes
DvLPOS(a°, a', a 2 , a3) (see [2, Theorem 4.2]) of the inscribed polygons, as
follows.

Theorem 9. If the l-th order divided difference scheme of the inscribed poly-
gon process PaS(a°, a1 , a2 , a3 ) exists and converges uniformly to f, C C[0, n],
then also the divided difference processes DvPOS(aOa 1, aa2 , a3 ) exist and

converge uniformly to f, E Cl-'[0,n] for v = 0,1,...,1, and f•v) = fV.
Hence, the spline subdivision scheme S(a°, al, a 2 , a3 ) converges uniformly to

g E C'+1 [0, n] with g(v+l) = fv.

For instance, in order to prove that the limit function generated by the spline
subdivision scheme is C 2 , the difference process ADP&S(a°, a1 , a2 , a3) of the
divided difference scheme has to be shown to be contractive, analogously to
Section 3.1. The divided difference scheme DPaS(a , a1 , a2 , a3 ) has the gen-
erator matrix D = 2Em_1 P(EM1)1 (1...M-2). From this matrix we get the

generator matrix C = Em2 D (Em2 (I...M-3) of the associated differ-genratr atrx * =EM- D(EM2)1 l... M-3]

ence scheme ADPOS(a°, a1 , a 2, a3). In order to guarantee a C2 limit function,
the matrix norms JC* ... Ci*L,1, V ij C {0, 1} and j = 1,...,L have to be

less than 1 for some L, where C = (1...M-), and * = ...M-5

§4. A Generalized 4-Point Scheme

Based on a geometric construction, Dyn, Gregory, and Levin [3] derived a
family of interpolating 4-point schemes. This family can also be obtained
from an optimization-based approach, as follows. Let the subdivision scheme

generate a sequence of piecewise linear functions y(k) with knots t k) andn (k)

control points qt . In order to derive the refinement rules, we replace one
segment of y(k) with two new ones (shown as dashed lines in Figure 2, left),(k+l)
subject to CO boundary conditions. The new vertex q2i+l is placed by min-
imizing the jumps of the first derivatives between new and old polygons. In
fact, minimizing the weighted linear combination

F(k+q)) 1-4w' [y(k+l)(t(k+l))_y(k+l)(t(k+))J]2

2 [);(k)(t~k)) *;(k+l),.(k),]2 2 ,;(k+l)(t(k) ,'(k)(t(k))]22 w Y +3 [ (t )] + 2I. +• } -- 0 -- [ i+ l} r I, i+ l)]
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(k) Optimization Optimization ( 0 1k+!)

Interpolation 
nep.t~

I I I I I l l : 1 : : :l : :~ :
(k) t(ik) (kW!) (k) t(k) tk) (k) t1ki+ ) (k) (k)t i-I " 2i+ ti+l i+2 i-I ti 2I +1 i+ ti+2

Fig. 2. Weights of objective functions in the point (left) and spline (right) case.

of squared differences of derivatives produces exactly the refinement rules of
the interpolating 4-point scheme.

This approach can be generalized to the spline case. In order to derive the
refinement rules, we replace one segment of X(k) with two new ones (shown
with dashed control polygons in Figure 2, right), subject to C' boundary con-

(k+i) •(k+i) aepae ymnmzn
ditions. The inner new control points P4i+21I (+ are placed by minimizing
the jumps of the second derivatives between new and old splines. Minimizing
the weighted linear combination

Fp p(k+l) 4(k7-)= 1), [(k+l)÷(k+l)) - (k+l){t1 
(k+l).)]2

F/-p4i+2 ,F4i÷3 IX-•' "- (t2i÷I ]-• ,2i+1 )

+._ r (k)(k) r ]2 ;C, [k(k+l)(t(k) )_X(k)(t(k) ]2+8,L Xr )-+1 (ti ,] +E Li ki+l1-+ z. J kil]2

of the squared differences of the second derivatives gives the refinement masks

a = (0,, ,,0,0,o0,0), a' (0,0, 1, 0, 0, 0,0,0),
*a2 = (0, 1 + w,- - 2w,3 2 3w,3- 3w, -i + 2w, 0),

=(0,!-w,-1+2w,- 3w, +3w, -1-2ww,! ,0),

see (5). In order to analyze C 2 continuity of the limit function, we compute
the generator matrix of the difference process ADPaS(a°, a 1 , a 2 , a 3), which
has to be contractive. Using the techniques of Section 3.1, we estimate the
C2 convergence range of the parameter w, see Figure 3.

matrix norms obtained

by considering the composition
.0 of 6 steps, i.e. L= 6

C convergence range (marked in grey)

-0.01 0. 0.04 0.05 W

Fig. 3. Estimating the C 2 convergence range of the generalized 4 point scheme.
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0- - - - - - - - - - - . . . .- - -

- - - -

Fig. 4. Interpolatory limit functions (left) and derivatives (right).

Two limit functions interpolating three given Hermite elements have been
drawn in Figure 4 (left). The functions have been generated with the help
of Merrien's C' scheme (a = 0.2, dashed curve, cf. [4,7]), and using the
generalized 4-point scheme (w = 0.015, solid curve). As can clearly be seen
from the associated first derivatives (right), the generalized 4-point scheme
produces a C2 limit function.
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